Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ICESat‐2 and GEDI missions were launched in 2018, becoming the new generation of space‐borne laser altimeters. These missions provide unprecedented global geodetic elevations, opening great opportunities for water level monitoring. The potential of these altimeters has been demonstrated in open‐water environments such as lakes, rivers, and reservoirs. However, detailed evaluations in vegetated environments, such as wetlands, floodplains, and other areas not constrained by water canal networks, are essential for continued improvement and further hydrological application. We developed a systematic accuracy assessment of ICESat‐2 ATL08, and GEDI L2A products to monitor spatial‐temporal water level and depth dynamics over the South Florida Everglades wetlands. The evaluation was performed on data acquired between 2020 and 2021, using gauge‐based water level and depth estimates as references. The results showed an RMSE of 0.17 m (water level) and 0.15 m (water depth) for ICESat‐2 and 0.75 m (water level) and 0.37 m (water depth) for GEDI. The analysis suggested that nighttime acquisitions were more accurate for both missions than daytime ones. The low‐power beams achieved slightly higher accuracies than those of the high‐power beams over the evaluated wetlands. Water level retrieval was more problematic in densely vegetated areas; however, we derived a correction model based on the leaf area index that improved the accuracy by up to 75% for water depth retrievals from GEDI. Furthermore, the analysis provides new insights to understand the potential of the altimeters in monitoring the spatial‐temporal dynamics of water levels in the evaluated wetlands.more » « less
-
Abstract. Geography and associated hydrological, hydroclimate and land-useconditions and their changes determine the states and dynamics of wetlandsand their ecosystem services. The influences of these controls are notlimited to just the local scale of each individual wetland but extend overlarger landscape areas that integrate multiple wetlands and their totalhydrological catchment – the wetlandscape. However, the data and knowledgeof conditions and changes over entire wetlandscapes are still scarce,limiting the capacity to accurately understand and manage critical wetlandecosystems and their services under global change. We present a newWetlandscape Change Information Database (WetCID), consisting of geographic,hydrological, hydroclimate and land-use information and data for 27wetlandscapes around the world. This combines survey-based local informationwith geographic shapefiles and gridded datasets of large-scale hydroclimateand land-use conditions and their changes over whole wetlandscapes.Temporally, WetCID contains 30-year time series of data for mean monthlyprecipitation and temperature and annual land-use conditions. Thesurvey-based site information includes local knowledge on the wetlands,hydrology, hydroclimate and land uses within each wetlandscape and on theavailability and accessibility of associated local data. This novel database(available through PANGAEA https://doi.org/10.1594/PANGAEA.907398; Ghajarniaet al., 2019) can support site assessments; cross-regional comparisons; andscenario analyses of the roles and impacts of land use, hydroclimatic andwetland conditions, and changes in whole-wetlandscape functions and ecosystemservices.more » « less
-
Wetlands are often vital physical and social components of a country’s natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the Global Wetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3—“Improve water quality”; 2.4—“Sustainable food production”; and 12.2—“Sustainable management of resources”. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4—“Efficient resource consumption”; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: “Basic human needs”, “Sustainable tourism”, “Environmental impact in urban wetlands”, and “Improving and conserving environment”. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a “wise use” of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems.more » « less
An official website of the United States government
